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Atomistic modelling of quantum diffusion in
metals
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Most theories of quantum diffusion start from model Hamiltonians. The diffu-
sion rates are calculated in terms of parameters such as an effective tunnelling
frequency. Often low temperature expansions are used. In this paper we present
a calculation of diffusion rates from given interatomic interactions. The approxi-
mations leading to the model description are discussed and their breakdown with
increasing temperature is shown. The experimental diffusion rates for H in Nb
are reproduced by a parameter free calculation.

THE ROYAL A
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1. Introduction

Hydrogen diffusion is strongly influenced or even determined by quantum effects.
This is evidenced particularly by the non-classical isotope effect and by the large
diffusion rates at low temperatures which exceed those of other interstitial atoms
by orders of magnitude. A study of these effects is facilitated by the large mass
ratio of up to three between the isotopes hydrogen, deuterium and tritium or
even thirty if one includes the muon p* as an isotope.

In classical diffusion theory the activation energy is taken as the difference in
potential energy between the equilibrium and saddle point configurations. Due
to the small mass there is, in the case of interstitial hydrogen, also a considerable
change in vibrational energy (zero point motion) between the two configurations.
The activation energy is the sum of both changes and, therefore, is isotope de-
pendent. The sign of this isotope effect will depend on the local structure and
on the material. This effect might in some cases suffice to explain the observed
non-classical behaviour.

In other materials, e.g. H in Nb, much more pronounced isotope effects are ob-
served. Here diffusion is thought to be by tunnelling between sites and commonly
the term quantum diffusion is used. Diffusion of u* will be by tunnelling also in
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— materials where the quantum effects for H are small.

< This paper concerns itself with quantum diffusion in this narrower restricted

> E sense. We restrict ourselves further to the low concentration limit where the

® s hydrogen atoms occupy random interstitial sites. Diffusion is then by random

e hopping from one site to a neighbouring site and interaction with other hydrogen

=0 atoms is negligible.

L O The basic theories for quantum diffusion of light particles in metals were de-

=@ rived some 20 years ago. They start from the Born—-Oppenheimer approximation

32 where it is assumed that the electrons adiabatically follow the nuclei. Having adia-

Yo batically eliminated the electronic degrees of freedom one is left with a tunnelling
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298 H. R. Schober

particle coupled to the phonons of the host crystal. The defect-phonon problem
is treated in the well-known papers on phonon assisted tunnelling by Flynn &
Stoneham (1970), Kagan & Klinger (1974) and by Teichler & Seeger (1981). This
work originates from the small polaron theory of Yamashita & Kurosawa (1958)
and of Holstein (1959).

These earlier theories break down on both sides of a temperature scale. Con-
ventionally, the dynamics of the system is decoupled into the fast dynamics of
the hydrogen, determining the ‘naked’ tunnelling probability, and the slower dy-
namics of the host atoms, represented by a phonon heat bath which ‘dresses’
the tunnelling probability. The hydrogen is assumed to follow the host lattice
adiabatically. As a second, more stringent approximation, the naked tunnelling
probability is taken to be independent of the state of the phonons, i.e. the temper-
ature (Condon approximation). Both these approximations hold as long as only
long wavelength phonon states are populated. They break down at temperatures
above ca. 50 K. At higher temperatures the strong coupling between hydrogen
and host-lattice vibrations (Lottner et al. 1979) gains importance. The Condon
approximation is the reason of the failure of the these theories to reproduce the
experimentally observed kinks in the Arrhenius plots for the diffusion constants
in Nb and Ta.

Standard small polaron theory is also unable to describe the low temperature
limit correctly. In recent years, it has become clear that at low temperatures the
tunnelling dynamics of light interstitials is strongly affected by a non-adiabatic
interaction with the conduction electrons of the host metal. These non-adiabatic
electron effects are ignored in the conventional Born-Oppenheimer approxima-
tion. Kondo (1984) introduced non-adiabatic electronic effects into the theory to
explain the low temperature diffusion rate of muons in metals (Hartmann et al.
1980).

Besides these electronic terms there are also additional phononic terms which
affect the low temperature rates. Small polaron theory considers only a bilin-
ear coupling between the hydrogen coordinate and the host lattice (one phonon
coupling). The next term in the hydrogen-lattice coupling, i.e. a two phonon
coupling, has been considered in detail by Kagan & Prokof’ev (1989) who use
the term fluctuational preparation of the barrier. The origin of this term is the
change of host lattice phonon frequencies which is caused by the hydrogen inter-
stitial and depends on the hydrogen position. The contribution of this term at
low temperatures is formally similar to the electronic one but is also present in
insulators.

Distortion fields, always found in real solids, will cause a bias € between adjacent
minima. For temperatures kT < e this bias depresses the diffusion rate.

Calculations of diffusion rates can be done by either of two ways. In one ap-
proach the system is described by a model Hamiltonian which describes all or
some of the above effects. One thus describes the physics by a number of pa-
rameters (effective tunnel frequency, one phonon coupling, two phonon coupling,
electron coupling and bias) and additional parameters if excited states of the
hydrogen vibration are to be included. In a Debye approximation the various
couplings reduce to numbers and analytical results can be derived. For a detailed
review see Kagan & Prokof’ev (1992). A problem with such an approach is that
the parameters cannot be assigned uniquely and that they are effective quantities
which can hide effects, e.g. of real spectra. Calculations using realistic spectra,

Phil. Trans. R. Soc. Lond. A (1995)
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but still based on small polaron theory, were reviewed by Vargas et al. (1991).
The model parameters for different isotopes cannot be calculated from each other.
The other approach, which we follow in this article, is to calculate the rates
from atomistic properties such as interatomic couplings and forces. Since to date
no sufficiently accurate ab initio electronic simulations are available we describe
the hydrogen—metal interaction by a pair potential fitted to the localized vibra-
tions and the long range lattice displacement (dipole tensor). The host lattice is
described by Born—von Karman parameters fitted to the phonon dispersion. The
calculation of the phonon contribution to the diffusion rate is then parameter
free. :
To get an estimate of the various effects we first calculate the energies entering
the problem. From this qualitative picture we proceed to derive the matrix ele-
ments needed to calculate the dynamics of the tunnelling process. From a general
Hamiltonian we abstract through a number of approximations the Hamiltonian
for the tunnelling system coupled to an electronic and phononic heat bath. We
then extend the standard small polaron theory to higher temperatures by avoid-
ing the low temperature approximations. This can be done conceptually fairly
easily using Fermi’s golden rule but involves numerical calculations (Schober &
Stoneham 1988).

2. Statics and dynamics of hydrogen in metals

As a specific example we take hydrogen in Nb (Nb:H). To get numerical esti-
mates we use the models of Klamt & Teichler (1986) and of Sugimoto & Fukai
(1980). In figure 1 we give a schematic view of the energy landscape encountered.
It should be kept in mind that in reality this landscape is multidimensional and
cannot be mapped onto a single reaction coordinate.

When the hydrogen is introduced into the periodic lattice it will distort the
lattice and thus lower its energy. In Nb:H the hydrogen occupies tetrahedral
sites and the four nearest neighbour atoms are displaced by about 0.1 A. This
lattice distortion breaks the translational symmetry; neighbouring sites are no
longer equivalent. The hydrogen wave function becomes localized in the mini-
mum (self-trapping). From the model calculations one estimates the difference
between the total energies of the undistorted and the relaxed lattices, respec-
tively, to Egy ~ 450 meV. This so called self-trapping energy consist to about
equal parts of gain in potential energy and of the reduction of the zero-point
vibrational energy. For a u* interstitial we get Esr ~ 900 meV where only about
10% is potential energy. The potential energy gain for an infinitely heavy hydro-
gen isotope would be about 300 meV. Comparing these numbers we see that it
is advantageous to sacrifice potential energy to reduce vibrational energy. This
implies a strong coupling between the hydrogen vibrations and the lattice and an
isotope dependence thereof.

One of the basic assumptions of standard quantum diffusion theory is that the
hydrogen is, on a relevant timescale, localized at a site and that tunnelling is
from one such site to the next. To check the validity of this assumption different
possible sites have to be compared. One finds localization to the tetrahedral site
for H and the heavier isotopes, whereas for the u™ no certain answer can be given
due to the predominance of the vibrational energy and the uncertainties in the
interaction models.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. Schematic potential energy curves for a hydrogen interstitial (2d is the distance be-
tween neighbouring interstitial sites). Solid line, metal host lattice unrelaxed; broken line, host
lattice relaxed (self-trapped configuration); dot-dashed line, coincidence configuration; Egr is
the self-trapping energy; E'nn is the nearest neighbour site energy; E. is the coincidence energy;
E)v is the classical migration energy.

The dynamics of the hydrogen on its site is dominated by the localized vibra-
tion modes with frequencies of iwy = 100 meV and 170 meV, respectively, where
the latter mode is double degenerate. The frequencies of the localized vibrations
are strongly affected by lattice distortions. In the unrelaxed lattice they would
be 50-100% higher. The localized modes account for nearly 99% of the spectral
intensity of the hydrogen. Additionally, the H participates in the host lattice vi-
brations (band modes). These modes are at much lower frequencies, the relevant
energy scale is given by the Debye frequency of Nb, Awp = 22 meV. The am-
plitude of the H is strongly enhanced for some of these vibrations and shows a
resonant like behaviour (Lottner et al. 1979). These latter vibrations determine,
because of their lower frequencies, the temperature dependence of the thermal
mean square displacements of the H below 1000 K which is a strong indication
that they will also be important for the hydrogen mobility. The resonant like
vibrations of the H result from the near neighbour geometry of the tetrahedral
sites and consequently couple to short wavelength phonons. The coupling of the
hydrogen to the long wavelength phonons is much weaker, the vibrational ampli-
tude of the hydrogen about equals the one of the host atoms for these modes. It
is important to distinguish between the three different groups of vibrations: The
frequencies of the localized modes determine the order of magnitude of the tun-
nelling matrix element between sites (cf. (2.1)), the weakly coupled low frequency
phonons give the temperature dependence in the standard small polaron theory
and the excitation of resonant and localized vibrations causes the breakdown of
this description towards higher energies as will be shown later.

In addition to these intrasite energies a number of intersite energies are relevant

Phil. Trans. R. Soc. Lond. A (1995)
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for diffusion. First, if the hydrogen is moved from its initial site ¢ to a nearest
neighbour site f without allowing the lattice to relax, the potential energy will
be raised by Eg&tc &~ 100-150 meV. The change of the localized modes will add
an additional contribution. These values are of the order of the localized mode
energy. They prevent tunnelling in the vibrational ground state .of the hydrogen
but tunnelling in the excited state might be possible.

To enable tunnelling in the groundstate between sites ¢ and f either the hydro-
gen has to tunnel together with its deformation field (dressed tunnelling, small
polaron) or the lattice has to be deformed such that sites ¢ and f become equiv-
alent. There is of course an infinite number of such deformations. The minimal
energy needed is called coincidence energy. It can be estimated by hypothetically
putting half the hydrogen into each of the two sites. The models give values for
the total coincidence energy F. between 35 and 50 meV of which approximately
10 meV is the vibrational part. This coincidence energy is a measure for the
strength of the phonon dressing effects.

Finally one can define a classical activation energy Efi. This is the energy
needed to move the hydrogen by an adiabatic deformation of the lattice from one
site to the next. The saddle point configuration is then the lowest coincidence
configuration for which the distance between the two sites vanishes. The model
calculations give values between 70 and 130 meV as classical activation energy,
of which again typically 10 meV is the vibrational part. Extrapolating from the
measured vibrations of the Nb:H one obtains similar values for E5; (Lottner et
al. 1979). This energy is of the same order or even smaller than the energies
of the localized vibrations and the usual condition Efj > hw, holds only for
the lattice vibrations but not for the localized ones. Hence, deviations from a
classical hopping behaviour have to be expected in the Nb:H system even at high
temperatures.

The similarity between classical activation energy and vibrational energy has
an important consequence for the vibrational states of the hydrogen. If one takes
a hydrogen in its relaxed position and excites one of the localized modes, en-
ergy can be gained by deforming the lattice towards that classical saddle-point
configuration where that localized mode is unstable. The elastic energy needed
is gained from the vibrational energy. In the model calculations of Sugimoto &
Fukai (1980) and of Klamt & Teichler (1986) this results in delocalization of the
excited states whereas experimentally even the higher excited states are observed
(Hempelmann et al. 1981). However, an important consequence of this strong
coupling between relaxations and localized modes for the diffusion of hydrogen
will be the breakdown of the Condon approximation of the small polaron theory
where just this dependence is neglected.

A basic quantity characterizing quantum effects is the tunnelling matrix ele-
ment J in the coincidence configuration. Assuming a sine like potential between
the two sites, the tunnelling matrix element can be evaluated using the eigenval-
ues of the Mathieu equation,

— BA — 4 2
J=hA = hwﬂ\/wx/c—fexp (8/7%)a, (2.1)
with . o = dmwd?/h, (2.2)

where A i’.s't‘hbe tunnelling frequency, m is the mass of the tunnelling particle, w the

Phil. Trans. R. Soc. Lond. A (1995)
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effective vibrational frequency and 2d is the distance between the two equilibrium
sites. o scales with \/m and due to the exponential dependence the tunnelling
matrix element shows a very strong isotope effect. Kehr (1978) has evaluated
(2.1) for Nb (2d = 1.17 A) and gets the estimates Jy = 1.5 meV, Jp = 0.14 meV
and Jy, = 85 meV for hydrogen, deuterium and p*, respectively. These values
are large enough to make tunnelling observable and for diffusion to be dominated
by quantum effects at least at low temperatures. The observed tunnelling matrix
element is of course reduced from this naked one by the effects of phonon and
electron dressing which are the main subject of this paper.

3. Hamiltonian of the hydrogen—phonon system

As a first approximation the dynamics of interstitials in metals can be treated
within the Born-Oppenheimer approximation which assumes that the electron
distribution adjusts itself instantaneously to the ionic configuration, i.e. the elec-
trons always occupy the momentary ground state and there is a smooth transi-
tion between these states. The only elementary excitations are then the phonons
whose energies can be calculated well in this approximation. In a metal there
are of course additionally electronic excitations with arbitrarily low energies and
these will affect the dynamics at very low temperatures where the phonons are
frozen out due to the w?-dependence of their spectrum. The low temperature for-
mulae for the phononic contributions can easily by augmented by the electronic
terms.

In the Born—-Oppenheimer approximation the dynamics of the hydrogen metal
system is determined by the kinetic energy and an effective interionic potential.
The Hamiltonian can be written as

Here Ty and Ty are the kinetic energies of the hydrogen and the metal ions,
respectively, Vs is the potential energy of the ideal metal host lattice and Vi
is the change due to the hydrogen. Since the displacements of the metal ions by
the hydrogen are not too large, a reasonable, often used model for V) is given by
the harmonic approximation,

Vi =1 st 77 sp, (3.2)
a5

where s™ = R™ — R°™ is the displacement of the metal ion m from its ideal
position R°™ and the coupling constants & are taken from Born-von Karman fits
to the phonon dispersion. In second quantization the displacements are expressed
by phonon creation and annihilation operators b;rA and bgy:

h )1/2 e(q,\) opn
8" = | ——— —2 el (p 4T ) 3.3)
<2NM (LZA M ( qA gqA (
and Hyp =Ty + Vi = D hwgy bly b,y (3.4)
qA

Here q is the wave vector, A the polarization and w,, the frequency of the phonon.
The change in potential energy due to the hydrogen will, in general, be a many

Phil. Trans. R. Soc. Lond. A (1995)
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body potential depending on the hydrogen coordinate RY and on the lattice
coordinates R™. The most simple approximation is to take pairwise potentials
between the hydrogen and its near neighbours.

Vi = 3" V(IR™ = R™)). (3.5)

The pair potential is then fitted to the experimental values of the lattice expansion
and of the localized hydrogen vibrations. This Hamiltonian has the full transla-
tional symmetry of the lattice. Assuming self-trapping, i.e. that the hydrogen
atom is localized at one site sufficiently long for the lattice to relax, the various
energies given in the previous section can be calculated. For a truly quantum
mechanical calculation this Hamiltonian is still too complex and one therefore re-
sorts to an expansion in terms of displacements from a suitably chosen reference
configuration.

Due to the exponential distance dependence of the tunnel splitting A (equation
(2.1)), direct transitions to all but the nearest neighbour sites can be neglected.
The tunnelling problem can be reduced to the tunnelling between two sites only.
We introduce approximate total wave functions ¥{)(R", s) and ¥(D(R",s) for
the hydrogen localized at its initial and final site, respectively. These wave func-
tions are many body wave functions depending both on the hydrogen coordinate
RY and on the lattice displacements s™. We enumerate the states of the system
such that for n; = n; the wave functions belong to equivalent states related to
each other by the symmetry of the lattice of interstitial sites. The wave functions
) and ¥ are eigenfunctions of the Hamiltonians H® and H®, respectively,
where the potential energy in (3.1) was modified such as to produce stable po-
tential energy wells for the hydrogen at sites (i) and (f), respectively.

The solution of the tunnelling problem involves the calculation of the matrix
element

ni

M = (0 (RY,5) |[H — 3(HO + HO)| #{)(R", 5))
= (@0 (RY, 5) |Vo(R", 5)| &0 (R",5)). (3.6)

ni
The kinetic energy terms cancel in this expression and the transition operator
Vr is the change in the potential energies only. The main contribution to the
matrix element is from Vp at the region of maximal overlap between the two wave
functions. To calculate the matrix elements one has to integrate the potential
energy surface over all coordinates.

The standard solution in the framework of small polaron theory involves four
additional approximations, all of them valid only at low temperatures. First the
adiabatic approrimation for the hydrogen motion: as in the Born—-Oppenheimer
approximation for the electrons it is assumed that the hydrogen wave function
follows the metal ions instantaneously. At any given time the hydrogen tunnelling
is determined by the frozen lattice configuration at that time. The total wave
function is then approximated by

TO(RY, s) = ¢V (RY; s)xV(s), (3.7)

where &) represents the hydrogen wave function which depends parametrically
on the lattice configuration. Second, since the adiabatic approximation is only

Phil. Trans. R. Soc. Lond. A (1995)
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valid at low temperatures, the hydrogen wave function is restricted to the ground
state @) (truncation approzimation).
The wave function () satisfies

(T + Vigu (RY, 5)) 8D (R, 5) = ) (5) 8D (RH; 5) (3.8)
and the lattice wave functions x(V satisfy
(Tw + Var + €V (8))x1(8) = Euxi (s)- (3.9)

Inserting these into (3.6) we can define a ‘naked’ tunnel splitting,
J(s) = 2( @ (R™; 5) |Va(R™, 5)| 87 (RY; 5)), (3.10)

where the integration is over the hydrogen coordinates only. This tunnel splitting
depends still on the lattice configuration. At low temperatures when only long
wavelength phonons are excited this dependence is weak and the tunnel splitting
is taken as a constant (Condon approzimation). Some theories have already dis-
cussed the configuration dependence of J(s) formally in linear approximation in
s. This gives rise to the so called ‘barrier fluctuation effect’ (Kagan & Prokof’ev
1989).

The matrix element (3.6) is obtained by averaging J(s) over the lattice wave
functions x{V(s) and x{!(s),

Mo = 5 (x5 (8) | ()] X3, (5)), (3.11)
which simplifies in the Condon approximation to
Mine = 57 (X (8)] x51) (s)). (3.12)

The naked tunnelling term is dressed by the overlap of the initial and final state
lattice wave functions, the polaron term.

As a next step, in accordance with the harmonic Ansatz for the intermetal-
lic coupling VM, we expand in (3.9) the energy term €¥(s) in powers of the
displacements

€(i>(3):€(i>—ZF()mm+2Zs V™ s 4L (3.13)

The first term is a constant ‘chemical’ bmdmg energy of the hydrogen, the second
is the relaxation energy in lowest order and the third term is a change of the vi-
brational coupling parameters to lowest order. Taking the displacements s™ from
the coincidence configuration instead of the ideal lattice position, the expansion
(3.13) converges much more rapidly. The force term is reduced to

FOm — pim _ plam o %(F(i)m _ F(f)m) (3.14)
and similarly the force constant change
f/(i)mn — V(i)mn . V(c)mn ~ % (V(i)mn _ V(f)mn). (315)

The bulk of the force constant change is now absorbed in V(™" which is no
longer translationally invariant. Expressing s™ by phonon creation and annihila-
tion operators, one sees that (3.13) is an expansion in powers of phonon operators.
Normally, only the first order term is taken (linear coupling approzimation).

Phil. Trans. R. Soc. Lond. A (1995)
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At low temperatures one is interested in the coupling to long wavelength
phonons which can still be described by plane waves which are slightly shifted
between the initial and final states. In terms of the force dipole tensors P and
PO of the initial and final state configurations, respectively, one has for the long
wavelength limit

. oY1 e(g,\)
Z Fo(“)" st = (———) = Z { P(') Pag ——"% gz cos(2qd)
> avar) 22 |i )=

+ [(P( P(f)) (q?j\)q s1n(2qd)} (bgr +07,0). (3.16)

To lowest order in g this gives in view of wgy ~ ¢
Z [ Z = Zcq)\(bq/\ + btq)\)’ (317)
gqA

where Cor = quZAl/z. (3.18)
Here s = 1 applies for tunnelling between sites with different orientation and
therefore changing the dipole tensor P, e.g. tetrahedral sites in bcc lattices, and
s = 2 applies if the site symmetry does not change, e.g. octahedral sites in fcc
lattices. It should be noted, however, that in Nb and Ta an isotropic dipole tensor
is found so that the s = 2 term dominates despite the site symmetry.

Under the above approximations, which are reasonable at low temperatures,
the hydrogen metal system can be mapped onto the much simpler spin boson
Hamiltonian (Grabert & Schober 1994).

4. Evaluation of diffusion rates

With increasing temperature the different approximations leading to the spin
boson Hamiltonian break down. First corrections to the long wavelength limit will
become noticeable. These can at first be incorporated by taking a more accurate
expression for the linear coupling term (3.17). When short wavelength phonons
become excited the local geometry will fluctuate strongly and the Condon ap-
proximation will break down. Eventually, the localized modes of the hydrogen
are excited causing a failure of the truncation approximation. Furthermore, hy-
drogen has been found to vibrate not only with localized modes but also with
quasi-resonant modes inside the band of lattice modes. Such vibrations are not
properly accounted for by the adiabatic approximation. The aim of the theory
of diffusion of hydrogen at higher temperatures is therefore to circumvent the
approximations, most importantly the Condon approximation.

We retain the picture that the hydrogen is in well defined states in the initial
and final interstitial sites, i.e. we assume that the hydrogen occupies each site
sufficiently long for self-trapping to be effective. The transition probability can
than be found by the use of the Fermi golden rule expression for quantal transition
rates:

I ={{w" ), (4.1)
Phil. Trans. R. Soc. Lond. A (1995)
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with the partial rates,
i 2m () [ pH H () pH 2 @) ()
w' = 25 (D (R, 5) [V (R, 5)| €0 (R™,8))| 6(EY — BO),  (42)

which follows directly from (3.6). Here E®) and E®) are the total energies of the
initial and final states, respectively and ({ }),, denotes thermal averaging over
initial states n; and summation over final states ny.

The validity of this expression is restricted to the purely incoherent regime.
To study the transition from coherent to incoherent tunnelling different methods
have to be used (see Grabert & Schober 1994). Also correlations between single
jumps which become important at high temperatures are not included.

Since in the region of incoherent tunnelling, the hopping rate I' is the same
whether the interstitial moves in a double well potential or in a periodic crystal
potential, the rate (4.2) also determines the quantum diffusion coefficient D. For
a crystal with cubic symmetry one has

D = L2(24)°T, (4.3)

where 2 is the number of neighbouring interstitial sites and 2d the distance be-
tween two sites.

Using the adiabatic, Condon and linear coupling approximations of the previous
section one gets the simple expression,

r= 2_7;2']3«' X)XV (s)) 7 6(BD = ED)))n,, (4.4)
where J; is the tunnel splitting of the naked hydrogen in the fixed potential of the
host ions and the temperature dependence is given by the averaged overlap of the
total vibrational wave functions of the host ions with the hydrogen in its initial
and final position, respectively. Even in this approximation the evaluation of the
transition rate is non-trivial since any vibrational mode in the initial configuration
will have a non vanishing overlap with many modes in the final configuration.
Only in the long-wavelength limit will the modes be only weakly affected by
the local defect geometry and it is reasonable to approximate them by identical
normal modes with only the mean positions of the atoms changed. The total
overlap integrals (3.12) factorize then into products of the single mode overlaps
which can easily be calculated. The transition rate follows as (Flynn & Stoneham
1970)

_ %

=29
4h?

+o0
/ dt exp {— Z Sy [coth(hwq/Qk:BT)[l — cos(wgt)] + isin(wqt)] } .

© q

(4.5)

Here we have used the index ¢ to denote the phonon g-vector as well as the
polarization. Each mode contributes with a weight given by its Huang-Rhys
factor which is given in terms of the difference of the mode displacements of the
initial and final configurations,

S, = 5 g —dd P, (4.6)

with m the host atom mass. These Huang-Rhys factors can be evaluated from
(3.16). For ¢ — 0 they are g in the isotropic case and oc ¢! in the anisotropic
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case. The above result for the transition probability contains a divergent part
due to diagonal transitions, i.e. transitions without phonon excitation. These
transitions are not dealt with properly in this model. In fact a main effect of
the interaction with the conduction electrons is a suppression of the diagonal
transitions. Since we are interested here in the high temperature regime we follow
the standard procedure and eliminate them from (4.5) which then after some
transformations takes the form (Holstein 1959)

JZ o cos(wyt)
=2 —S<T>/ 35 : —-1/. .
TN —oo d [eXp{ — "sinh(fw,/2ksT) } 1} (47)

The average Huang-Rhys factor S(T") describes the average phonon dressing of
the tunnelling matrix element

_ hw,
S(T) = ; S, coth ( 2kBT) . (4.8)
For low temperatures S(T') is of the form,
S(T) = S(0) + W(T), (4.9)

where the temperature dependent part W (T') is proportional to T2¢, with the
exponent s introduced in (2.27). The zero temperature dressing factor may be
absorbed into a renormalized tunnelling frequency

A = (Jo/h)e 5O)/2 (4.10)
and the transition rate can be written as
“+o00o
[= 1A% W@ / dt 7= — 1], (4.11)
cos(w,t)
h =E(T,t) = — S 1 . 4.12
where (T.t)=-2 “sinh(hw,/2knT) (4.12)

Going to the high temperature limit using the Debye approximation of the phonon
spectrum I" takes the simple form (Flynn & Stoneham 1970)

I' = (r/16h*E kgT)"/?J? exp(—E./ksT). (4.13)

This describes a near Arrhenius behaviour with the coincidence energy E. as
activation energy. Even by fitting the values of J and E. this result cannot re-
produce the measured diffusion constants, in particular the observed change in
slope of the measured diffusion constant in Nb and Ta. One remedy would be to
introduce transitions between excited states or different sites with a second set
of parameters J and E, (Vargas et al. 1991).

A more satisfactory approach is to avoid the serious approximations made,
in particular the Condon approximation. In the ‘occurrence probability’ method
(Emin et al. 1979; Klamt & Teichler 1986) the adiabatic approximation is partially
retained but one averages over possible coincidence configurations. Also transi-
tions between differently excited localized H states are included. Since different
coincidence configurations have different tunnelling probabilities for the ‘naked’
H an additional temperature dependence is found which can explain the change
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in slope of the Arrhenius-plot of diffusion of H in Nb. Gillan (1987) uses quan-
tum molecular dynamics to identify the symmetric coincidence configurations.
A direct calculation of the transition rate is not yet possible and the influence
of asymmetric coincidence configurations is difficult to estimate. Both methods
allow a comparison with classical diffusion.

We follow here another approach, the embedded cluster method (Schober &
Stoneham 1982). There one makes use of the spatial localization of the resonant
and localized modes. We do not separate the hydrogen and host degrees of free-
dom but treat a cluster of atoms (typically 6-21 atoms) explicitly and use the
above approximations only for the embedding of the cluster into the rest of the
host crystal. The limitations of this method are mainly due to computer capacity.
The number of degrees of freedom one can treat explicitly is limited owing to the
number of integrations involved in calculating a single transition element wi. On
the temperature side one is limited by the rapid increase in terms w' contributing
to the total transition rate I'.

To see the temperature range where the polaron expression breaks down we
calculate first an average coherent tunnelling rate, given by thermally averaging
the diagonal elements (n; = ny) of (3.16)

RAT) ~ 220 |Vi | &), (4.14)

Using the simplifications leading to (4.5) for the transition rate in the incoherent
case, (4.14) simplifies to

RA(T) = Je 5(1)/2, (4.15)

where S(T') is again the average Huang-Rhys factor. The total dressing el~5(7)/2]
of the tunnelling matrix element is of order 0.1 for Nb:H at low temperatures.

In figure 2 we compare the temperature dependencies of A(T") in Nb:H for
both the full expression evaluated in the embedded cluster approach and for the
weak coupling formula (4.15). The calculations were done using the interaction
potential of Sugimoto & Fukai (1980) with harmonic wave functions as basis.
For low temperatures we find agreement between the two expressions but for
T > 40 K the full expression predicts a strong isotope dependent structure absent
in the simplified form. This indicates a breakdown of the adiabatic and Condon
approximations at temperatures where the resonant-like (in-band) vibrations of
the H are excited. The same effects are apparent in the variance of A(T') which
increases rapidly with temperature. At 7' ~ 50 K it reaches 50%. In passing we
want to note that an estimate of S(7) from isotropic elasticity theory seriously
underestimates S(71') by about a factor 5 which again shows that the bulk of the
dressing stems from short wavelength phonons.

For the same model we have evaluated the incoherent transition rate. In the
embedded cluster approach the partial rates (4.2) take the form

) 2
if _ 2%
YT

Here the wave functions ¥ are wave functions of the cluster only (or of selected
important modes) and the § function is replaced by a shape function which ac-
counts for the broadening of the sharp modes of the atomic cluster by the em-
bedding into the lattice and for the omitted long range displacements.

In doing the integrals in (4.16) V; was expanded up to quadratic terms. We

(@) Ve D) PG(EY — ED). (4.16)
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Figure 2. Temperature dependence of the average tunnelling rate for hydrogen and deuterium
in Nb calculated from (4.14) (solid line) and in the weak coupling approximation (4.15) (dashed
line), respectively. The error bar gives the variance (Schober & Stoneham 1991).

thus take both two phonon processes and barrier shaking into account. Excitation
levels were included up to n = 4 for the single modes and transitions up to
n; = ny%2 for each mode were included. Figure 3 shows the results for the diffusion
coefficients of H and D, together with the experimental values. From T ~ 50 K
upwards we find an Arrhenius behaviour with a sudden change in activation
energy at T ~ 250 K. This kink can be understood from the partial rates, w'.
At low temperatures transitions are only possible without exciting the localized
vibrations of the H. The transition rate is therefore determined by the in-band
excitations only and can be described by a formula as (4.13) with an activation
energy of about 30 meV close to the coincidence energy of our model. At higher
temperatures scattering from the band states into the localized vibrational states
of the H becomes possible, mj,c = 0 — n,. = 1. These transitions with an
excited localized state have much larger tunnelling matrix elements and hence
gain importance. At still higher temperatures transitions between excited H-
vibrations become dominant. This general behaviour is in qualitative agreement
with the results of the occurrence probability approach (Klamt & Teichler 1986).

The model so far describes the general behaviour. It severely underestimates
the diffusion constant, however. This has to be expected, since using harmonic
wave functions, one underestimates the overlap between final and initial states.
So far the actual potential shape was included in the Hamiltonian but not in the
wave functions. To get a better quantitative agreement one has to improve on the
latter. For this purpose the anharmonic expansion parameters of the potential
energy at the initial and final equilibrium sites were studied. Three types of
anharmonic terms were found to be important:

(i) Fourth and higher order terms in the localized H vibrations (¢¥sl ) to
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Figure 3. Diffusion constants of hydrogen and deuterium in Nb. Solid line, experimental results
(Qi et al. 1983); broken line, calculation (Schober & Stoneham 1991) with harmonic wave-
functions; dash-dotted line, calculation including anharmonic corrections; dotted line, Vineyard
(1957) approximation for high temperatures.

bring the tunnelling frequency of the naked hydrogen up to the value of WKB
type expressions.

(ii) Third order couplings between localized and band modes (¢ spanash,).
These terms account for a reduction of the localized mode frequency when the
lattice is deformed.

(iii) Third order couplings between two of the localized modes due to the
nearby extremum of energy at the octahedral site.

Taking anharmonicity into account by first order perturbation theory and tak-
ing appropriate correction factors to reproduce the WKB result for the naked
hydrogen tunnelling, the agreement with the experimental results is markedly
improved without changing the general shape of the curves. At low temperatures
the activation energy is still much smaller than the experimental value. This
might be due to the underlying interaction model. On the other hand in NMR
experiments a value of 37 meV was found (Messer et al. 1984) in much better
agreement to the calculated value of 30 meV.

According to this model the diffusion of H at room temperature is still influ-
enced strongly by quantum mechanics. The calculation is not sufficiently accurate
to see whether and how the classical limit is reached at higher temperatures. For
comparison figure 3 shows also the results of a calculation of the Vineyard (1957)
approximation for classical diffusion. The shift in the prefactor between H and D
is about what one would expect from the mass difference. The activation energy
is 97 meV and 96 meV for H and D, respectively. Here 90 meV is the potential
energy part. The discrepancy between our quantum results and these classical
ones is not sufficient to draw any definite conclusion. Gillan (1987) puts the clas-
sical to quantum transition already at the kink. Since there will be a smooth
transition and due to differences in the model this need not be in contradiction
to our results.
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For the low temperature regime of diffusion (4.5) is a good starting point. One
best transforms the sum over g-values to one over frequencies. The non-adiabatic
electron coupling adds then an additional term to the Huang—Rhys factors. Due
to its different w dependence this additional term lifts the divergence due to
diagonal transitions and causes the observed increase of the diffusion rates at low
temperatures. A bias between the sites and two phonon terms lead to additional
terms in the exponent (Kagan & Prokof’ev 1992; Grabert & Schober 1994).

5. Conclusions

Model descriptions of quantum diffusion suffer by the large number of param-
eters one has to introduce in order to take all possible mechanisms into account.
To get simple results a number of approximations are usually introduced. The
strong interaction between the hydrogen and the host lattice is not fully taken
into account. Already at fairly low temperatures the approximations start to
break down. In the embedded cluster method, using the interatomic interactions
as only input, it is possible to calculate the diffusion rates of hydrogen in Nb. To
get a fully quantitative description the knowledge of the hydrogen lattice inter-
action should be improved. Any such calculations have to take the hydrogen zero
point motion into account.
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Discussion

D. K. Ross (Salford University, U.K.). Has the possibility of quantum tunnelling
to next-nearest sites been included?

H. R. SCHOBER. The tunnelling element for direct tunnelling to next nearest
neightbours is much smaller than that for nearest neighbour tunnelling. Direct
tunnelling to next nearest neighbours, therefore, should not contribute signifi-
cantly to hydrogen diffusion. There is of course, just as in classical diffusion,
correlation between subsequent tunnelling events. A calculation of this effect is
difficult and I have not included it in my calculations.

A. M. SToONEHAM (Harwell Laboratory, Ozfordshire, U.K.). In principle Dr
Schober’s results include both the polaron and barrier lowering terms (follow-
ing Dr Prokof’ev’s choice of names). How do these compare?

H. R. SCHOBER. My results incude both the polaron and the barrier fluctuation
effect. I have not made a systematic separation of the two effects. To do this the
adiabatic approximation for the hydrogen would have to be introduced. The data,
do, however, show that in the temperature region studied the quadratic effects
(barrier fluctuation) are much smaller than the polaron ones.
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